Rutgers University: Real Variables and Elementary Point-Set Topology Qualifying Exam
 January 2008 Day 2: Problem 4 Solution

Exercise. Let f be a Lebesgue integrable function on \mathbb{R}. Prove that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty}(\cos x)^{n} f(x) d x=0
$$

Solution.

Dominated Comvergence Theorem: Let $\left\{f_{n}\right\}$ be a sequence in L^{1} s.t.
(a) $f_{n} \rightarrow f$ a.e. and
(b) \exists a non-negative $g \in L^{1}$ s.t. $\left|f_{n}\right| \leq g$ a.e. $\forall n$

Then $f \in L^{1}$ and $\int f=\lim _{n \rightarrow \infty} \int f_{n}$

Let

$$
\text { and since } \int|f(x)| d x<\infty
$$

$$
\begin{aligned}
h_{n}(x) & =(\cos x)^{n} f(x) \\
\lim _{n \rightarrow \infty} h_{n}(x) & =\lim _{n \rightarrow \infty}(\cos x)^{n} f(x)=0 \\
\left|(\cos x)^{n}\right| & \leq 1 \\
\left|h_{n}(x)\right| & =\left|(\cos x)^{n} f(x)\right| \\
& =\left|(\cos x)^{n}\right||f(x)| \\
& \leq|f(x)| \\
|f| & \in L^{1}
\end{aligned}
$$

and since $|\cos x| \leq 1$,

Thus, by the Dominated Convergence Theorem,

$$
\lim _{n \rightarrow \infty} \int(\cos x)^{n} f(x) d x=\int_{\mathbb{R}} 0 d x=0
$$

